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Abstract. We consider the problem of selection the set of features that
are the most significant for partitioning two given data sets. The crite-
rion for selection which is to be maximized is the symmetric information
distance between distributions of the features subset in the two classes.
These distributions are estimated using Bayesian approach for uniform
priors, the symmetric information distance is given by the lower esti-
mate using Rademacher penalty and inequalities from the empirical pro-
cesses theory. The approach was applied to a real example for selection
a set of manufacture process parameters to predict one of two states of
the process. It was found that only 2 parameters from 10 were enough
to recognize the true state of the process with error level 8%. The set
of parameters was found on the base of 550 independent observations
in training sample. Performance of the approach was evaluated using
270 independent observations in test sample.

Keywords: classification, features selection, information distance be-
tween in-class distributions, Rademacher penalty, set of manufacture
process parameters

1 Introduction

Machine learning algorithms are widely applied in problems from different areas.
In applications general methods of data mining such as classification, regression,
estimation of distributions often are modified to meet specific conditions of the
problem which give a rise to new settings and to new methods of the problem
solution. Features selection problem gives such example. In real world problems
not all parameters have the same significance for classification or prediction of the
dependent variable value. Because of limited amount of experimental data one
needs to reduce the size of feature space to increase the statistical reliability of
the result. Principal component analysis or Fourier decomposition are examples
of such methods.

The universal way to construct a machine learning algorithm is to introduce
a functional and to minimize it. When one builds a regression model the target
is to reduce the mean error between a prediction and a real value of a process.
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The classification algorithm aims to minimize the probability of an error in the
class label assignment.

The problem of features selection can be set in the similar manner. One is to
form a set of features for which distributions in two classes are the most differ-
ent. In other words to minimize minus distance between the distributions. Such
settings arise when one looks for the data description to have high classification
result. This approach allows to find factors which are more relevant to one class
in comparison with the other.

The difference between classes can be measured as the divergence between
features distributions in the classes. It is important that distributions and the
divergence between them are to be evaluated on empirical data. Similar task of
features selection based on distributions divergence was considered in [1], where
frequencies of features occurring in the data were calculated and features with the
maximal difference of these frequencies in different classes were selected. In [7]
the method of features selection was focused on the maximization of dependence
between selected features and the target variable.

In the paper we consider the features selection problem in case of two classes
which are described by the conditional distributions of the features. The goal
of the method is to find the set of features for which conditional distributions
in classes have the maximal difference. The difference between distributions is
characterized by a functional of average risk. Maximization of the average risk
is equivalent to the Kullback-Leibler divergence maximization between the two
in class distributions. Because the real distributions are unknown, we estimate
them on the empirical data. The value of the average risk is estimated using
the Rademacher penalty term which takes into account the complexity of dis-
tribution functions in the subset of features. The proposed method selects a
set of features that provides the maximum of the average risk with the guaran-
teed prescribed probability. The method was applied to experimental data of a
manufacturing process.

2 Distributions Contrasting Algorithm

2.1 Average Risk

A lot of data analysis problems like classification, regression, probability density
reconstruction could be formulated in terms of average risk minimization. Prob-
lem of distribution contrasting can be set in the same way. Let x be a random
vector of continuous features, ϕ0(x) and ϕ1(x) be probability density functions
(pdfs) which estimate the conditional distribution of x under hypotheses H0

and H1 respectively, y be a class label variable which takes values 0 or 1 and
states the number of hypothesis. The loss function is defined in following form

fϕ0,ϕ1
(x, y) = −y lnϕ0(x)− (1− y) lnϕ1(x).

The functional of average risk is defined as an expectation of the loss function:

M(ϕ0, ϕ1) = −Ex,y(y lnϕ0(x) + (1− y) lnϕ1(x)), (1)
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where expectation is taken by joint distribution of x and y.

The functional has the meaning of ϕ0(x) and ϕ1(x) pdfs crossentropy weighted
by a priori probabilities of the hypothesesH0 andH1. Minimization of it by ϕ0(x)
and ϕ1(x) is equivalent to probability density reconstruction under different hy-
potheses. If the class label y is unobserved in the data then minimization of (1)
is equivalent to a clusterization problem [6].

In this paper we consider a different problem of average risk maximization.
Rewriting the functional of average risk gives

M(ϕ0, ϕ1) = I(ϕ0, ϕ1)− Ex,y(y ln p(x|H1) + (1− y) ln p(x|H0)),

where

I(ϕ0, ϕ1) = −Ex,y

(
y ln

ϕ0(x)

p(x|H1)
+ (1− y) ln

ϕ1(x)

p(x|H0)

)
.

Maximization of the average risk functional by ϕ0(x) and ϕ1(x) is equivalent
to maximization of I(ϕ0, ϕ1) which is close to the Kullback-Leibler divergence
between two pairs of distributions ϕ0(x), p(x|H1) and ϕ1(x), p(x|H0) [4]. In other
words, optimally selected functions ϕ̂0, ϕ̂1 should maximally differ from the true
pdfs of x under the hypothesis H1 and H0 respectively.

For probability density functions ϕ0(x), ϕ1(x) we use Bayesian estimates of
conditional distributions p(x|H0) and p(x|H1) obtained from given data with
formula [10]

ϕb
y(x) =

k∑
i=1

I(x ∈ σi)
(1− y)ni + ymi + 1

(1− y)l0 + yl1 + k
, (2)

where k is the number of bins in the histogram used in estimations, I(x ∈ σi) is
indicator which equals to 1 if vector x belongs to bin σi, l0 and l1 denotes the sizes
of independent samples obtained under hypotheses H0 and H1 respectively, ni
and mi are the numbers of observations from independent samples obtained
under hypotheses H0 and H1 respectively that put into the bin σi. Given formula
represents Bayesian probability estimation in case of uniform prior distribution
on a k-fold simplex.

With defined estimations the average risk for ϕb
0(x) and ϕb

1(x) is obtained by
substituting them in (1). Maximization of it in the way explained further gives
the set of features for which the Bayesian estimates of conditional distributions
under different hypotheses in these classes maximally differ. It allows us to con-
clude that the constructed set includes features for which the hypothesis can be
tested with less error than in case of using all features in the data sets.

2.2 Empirical Risk

Let x01, . . . , x
0
l0

be a sample with the pdf p(x|H0) and x11, . . . , x
1
l1

be a sample
with the pdf p(x|H1). The formula for pdf (2) is based on Bayesian estimates
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of histograms with k bins for first and the second classes. We denote these
estimates [10] of probability density of the bin i as

ϕb
0(i) =

ni + 1
k∑

j=1

nj + k

, ϕb
1(i) =

mi + 1
k∑

j=1

mj + k

. (3)

It is clear, that

0 < c ≤ ϕb
y(i), y = 0, 1, i = 1, . . . , k, c =

1

k + l0 + l1
; (4)

k∑
i=1

ϕb
y(i) = 1, y = 0, 1, (5)

and the vector ϕb
y = (ϕb

y(1), . . . , ϕb
y(k)) which satisfies conditions (4), (5) defines

a histogram. Finally, let F denote a set of histograms pairs (ϕb
0, ϕ

b
1) calculated

from empirical data using (3) for all subsets of features set.
The average risk M(ϕb

0, ϕ
b
1) reflects the divergence between Bayesian esti-

mates and real densities. In order to evaluate the average risk we calculate an
empirical risk by using average of empirical data instead of expectation. Apply-
ing Ey(y) = l1/(l0 + l1) we get a formula for the functional of empirical risk

Me(ϕ
b
0, ϕ

b
1) = − 1

l0 + l1

(
k∑

i=1

mi lnϕb
0(i) +

k∑
i=1

ni lnϕb
1(i)

)
. (6)

The relation between the average risk and the empirical risk was discussed
in [9]. Consideration of this relation allows us to switch from the maximization
of the average risk problem to the maximization of the empirical risk corrected
by a penalty term. A form of the penalty term will be discussed below.

2.3 Rademacher Penalization

The functional of empirical risk (6) can be presented in the form

Me(ϕ
b
0, ϕ

b
1) = − 1

l0 + l1

(
l1∑
i=1

lnϕb
0,x1

i
+

l0∑
i=1

lnϕb
1,x0

i

)
,

where ϕb
y,xt

i
– the Bayesian estimate of conditional probability under the hypoth-

esis Hy for the bin to which xti belongs.
Let δ01 , . . . , δ

0
l0
, δ11 , . . . , δ

1
l1

be a sequence of independent and identically dis-
tributed random variables which take values +1 and -1 with probability 1/2 each
independently of (x01, . . . , x

0
l0
, x11, . . . , x

1
l1

). The Rademacher penalty term [3, 5]
is defined then as
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R = sup
ϕb

0,ϕ
b
1∈F

∣∣∣∣∣ 1

l0 + l1

(
l1∑
i=1

δ1i lnϕb
0,x1

i
+

l0∑
i=1

δ0i lnϕb
1,x0

i

)∣∣∣∣∣ . (7)

With ∆y
i denoting the sum of δyt that correspond to the same bin i it could be

represented as

R = sup
ϕb

0,ϕ
b
1∈F

∣∣∣∣∣ 1

l0 + l1

k∑
i=1

(
∆1

i lnϕb
0(i) +∆0

i lnϕb
1(i)
)∣∣∣∣∣ .

In order to solve the optimization problem we remove the modulus be rep-
resenting the penalty term in form

R =
1

l0 + l1
max {A, −A} , (8)

where

A = sup
ϕb

0∈F

k∑
i=1

∆1
i lnϕb

0(i) + sup
ϕb

1∈F

k∑
i=1

∆0
i lnϕb

1(i).

Thus, in order to find the optimal solution of initial problem we consider the
optimization subproblem, which is to find

R′ = sup
ϕb∈F

k∑
i=1

∆i lnϕb(i). (9)

The solution is given by the rules 1-3:

1. If ∆i > 0, i = 1 . . . , k then

R′ =

k∑
i=1

∆i ln
∆i

k∑
t=1

∆t

2. If ∆i ≤ 0, i = 1, . . . , k then

R′ =

k∑
i=1

∆i ln c+∆m ln
1− c(1− k)

c
,

where m = arg maxi∆i

3. If ∆i > 0, i = 1, . . . , s and ∆i ≤ 0, i = s+ 1, . . . , k then

R′ =

s∑
i=1

∆i ln
∆i(1− c(k − s))

s∑
t=1

∆t

+

k∑
i=s+1

∆i ln c.

It’s important to notice that particular relation between ∆i, c and size of
empirical data set is significant. The solution for more general case, when ∆i

can take any values, is quite similar, but the rules become more complex.
By substitution of extremal values of (9) into (8) we obtain the value for the

Rademacher penalty term.
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2.4 Average Risk Evaluation

Values of the penalty term and the empirical risk can be used for estimation
of the average risk using the symmetrization inequality [2, 3]. For the class of
functions uniformly bounded by a constant U and for all t > 0 the following
holds

P

{
sup
ϕ∈F
|M(ϕ)−Me(ϕ)| ≥ 2R+

3tU√
l0 + l1

}
≤ exp

(
− t

2

2

)
. (10)

For Bayesian estimates (3) it is valid that 1
l0+l1+k ≤ ϕb

y < 1, from which we

obtain 0 < | lnϕb
y| ≤ ln (l0 + l1 + k) = U .

Using (10) and fixing the probability η = exp
(
− t2

2

)
we derive the following

inequality

P

{
sup
ϕ∈F
|M(ϕ)−Me(ϕ)| < 2R+

3
√
−2 ln η ln (l0 + l1 + k)√

l0 + l1

}
≥ 1− η.

Hence, with the probability not less than 1−η the lower bound of the functional
of average risk is

M(ϕ) > Me(ϕ)− 2R− 3
√
−2 ln η ln (l0 + l1 + k)√

l0 + l1
. (11)

2.5 Distributions Contrasting Algorithm

We consider a set of features X = (f1, f2, . . . , fn) measured in two different
classes. The goal is to find such subset Xj of X for which two classes maximally
differ in terms of the conditional distributions divergence. There are two stages:
first task is to form the sequence of features subsets, second is to define the
subset satisfied the goal.

We start with building histograms of k bins for each feature in a class. Then
the value of the empirical risk (6) is calculated and the feature with maximum
value of the empirical risk forms the beginning of sequence. Without restricting
the generality let the feature f1 be the one with a maximum value of the empirical
risk functional, so X1 = f1 ∈ X.

Then all possible pairs of features are constructed with one feature f1 ob-
tained in the first step and two-dimensional histograms for each pair in two
classes are built. Selecting the pair with the maximum value of the empirical
risk, e.g. the pair will be (f1, f2), leads to the second subset in the target se-
quence X2 = (X1, f2) = (f1, f2) ∈ X which is a superset for X1.

At the third step we create all possible triplets of features with two features
fixed on the previous step obtaining X3 in a similar way. The process continues
until all features are put in the sequence. As the result of the first stage we
obtain the sorted subsets of the features.

At the second stage of the algorithm we evaluate the average risk value (1)
using the estimation (11) for the features in Xj for each j ∈ {1, . . . , n}. The
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result is a set of estimates of the average risk : MX1 ,MX2 , . . . ,MX . Finally, we
select the average risk MXj

with the maximum value and corresponding subset
of features Xj .

Proposed algorithm of distributions contrasting has O(n2) complexity.

3 Experimental Results

The algorithm of distributions contrasting was evaluated using the empirical data
from a real manufacturing process presented by time records of 10 parameters.
The two states of the process were matter of interest and data were labeled by
an expert with the class label for each time point: 562 points in the first class
and 258 points in the second class. For evaluation purpose the data were divided
into a test sample and a training sample in proportion 1 : 2.

Then the distributions contrasting algorithm was applied to the training
sample. We sorted the sequence of ten parameters and evaluated lower bound
of the average risk. The value of the empirical risk and the 90% lower bound of
the average risk for the features sequences are shown in the Table 1.

Table 1. Results of the distributions contrasting

Number of Parameters included in the set Empirical Lower bound
parameters risk of average
in the set risk

1 10 4.799 2.1275
2 10, 1 6.884 2.9038
3 10, 1, 4 10.1013 1.9058
4 10, 1, 4, 5 13.4695 0.6662
5 10, 1, 4, 5, 2 16.8365 -0.4554
6 10, 1, 4, 5, 2, 7 20.2038 -1.5773
7 10, 1, 4, 5, 2, 7, 3 23.5711 -2.6551
8 10, 1, 4, 5, 2, 7, 3, 6 26.9384 -3.738
9 10, 1, 4, 5, 2, 7, 3, 6, 8 30.3057 -4.8208
10 10, 1, 4, 5, 2, 7, 3, 6, 8, 9 33.673 -5.9037

The lower bound of average risk riches its maximum on the pair of features.
With increasing number of features in the set the lower bound of the average
risk goes down. So the optimal number of parameters to distinguish two given
states of the system is two and it includes parameters #10 and #1.

To verify the results both training and test samples were classified using dif-
ferent sets of parameters described above. The Naive Bayes Classifier [6] was
used for classification. Figure 1 illustrates errors of classification for ten classi-
fiers. Each pair of columns reflects classification errors on the training sample
and on the test sample. The vertical axis describes the absolute value of error
and horizontal axis shows the number of features in the set.
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Fig. 1. Naive Bayes Classifier errors

The figure 1 shows that the error on the training sample, which was used for
features selection, is minimal for the set composed by parameters #10 and #1.
Exactly the same set was selected by the algorithm of distributions contrasting
as optimal one to distinguish the two classes. The training error is about 6%,
the test error is minimal on the same set of features and equals 8%. For sets
with more features both errors are greater because of higher dimension of feature
space. For the one parameter set both errors are greater because single parameter
is not enough for good classification of the considering process states. Results of
Naive Bayes classification show that the set of features obtained by the algorithm
of distributions contrasting gives precise and stable results of classification.

4 Conclusion

The algorithm of features selection proposed in the paper is based on the di-
vergence between distributions in the classes. Two classes considered in the
presented example were related to the two different states of the manufacture
process. The constructed features subset contained two parameters which were
enough to predict the state of the process with the high precision. This was
confirmed by control sample classification using Naive Bayes approach.

In other applications classes can be formed differently and features set can
have more specific meaning. One of example is described in [8]. The features
space was formed by ICD-10 codes of diseases that a person had at the end
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of his life. The class label in that case was formed by the logical condition
“did the person have a cancer?”. By selection the features set for which lower
bound estimate for distance between distributions of diseases in the two classes
had maximal value we found a list of diseases related to the cancer. All those
diseases act cancer stimulation role and should be cured at the initial state to
lower the risk of cancer incidence.
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